48 research outputs found

    Strong glacial-interglacial variability in upper ocean hydrodynamics, biogeochemistry, and productivity in the southern Indian Ocean

    Get PDF
    This work used samples and data provided by the IODP. We are thankful for the support from the crew of the R/V JOIDES Resolution and IODP staff. This work is funded through the Universidad de Salamanca Postdoctoral Contract supported by the Ministerio de Ciencia, Innovacion y Universidades Grant RTI2018-099489-B-I00 and the German Science Foundation (DFG) Research Center/Cluster of Excellence 'The Ocean in the Earth System' (MARUM; Grant No. 49926684). We acknowledge financial support from the National Science Foundation of the US under Award No. 1737218 (M.A.B), the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska Curie Grant Agreement No. 799531 (M.S.P.), and the Spanish Ministry of Science and Innovation Grant CTM2017-89711-C2-1-P, co-funded by the European Union through FEDER funds (F.J.J.E.).In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations.Universidad de Salamanca - Ministerio de Ciencia, Innovacion y Universidades Grant RTI2018-099489-B-I00German Research Foundation (DFG) 49926684National Science Foundation (NSF) 1737218European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska Curie Grant 799531Spanish Government CTM2017-89711-C2-1-PEuropean Union through FEDER fund

    Glacial southern ocean expansion recorded in foraminifera-bound nitrogen isotopes from the Agulhas plateau during the mid-Pleistocene transition

    Get PDF
    The emergence of 100-Kyr glacial cycles (The Mid-Pleistocene Transition [MPT]) is attributed in part to slower global overturning circulation and iron stimulation of biological carbon drawdown in the Southern Ocean. We present foraminifera-bound nitrogen isotope values and polar planktic foraminifera abundances from the Agulhas Plateau that show that increases in biogenic sediment accumulation coincide with northward migrations of the Subtropical Frontal Zone (STFZ) and elevated foraminifera-bound nitrogen isotope values during MPT glacial episodes. The nitrogen isotope values of two planktic foraminifera species, Globigerina bulloides and Globorotalia inflata show remarkable coherence amongst the sea surface temperature gradient between the STFZ and SAZ, and polar foraminifera abundances, indicating a strong relationship between nitrogen isotope dynamics above the Agulhas Plateau and migrations of the STFZ. Northward migration of the STFZ may have been essential to prolonging glacial intervals by increasing deep ocean carbon storage via a northward shift of the South Westerly Winds and a reduction in upwelling, delivery of fresher surface waters into the upper limb of global overturning circulation, or inhibiting heat and salt delivery to the Atlantic as Agulhas Leakage

    Expedition 361 summary

    Get PDF
    International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal

    Nycthemeral and Monthly Occupation of the Fish Assemblage on a Sheltered Beach of Baía Norte, Florianópolis, Santa Catarina State, Brazil

    Get PDF
    Interpreting fish community records is challenging for several reasons, including the lack of past ichthyofauna data, the cyclical temporal variations in the community, and the methodology employed, which usually underestimates fish assemblages. The objective of this study was to describe short-scale and meso-scale (nycthemeral period and months, respectively) temporal variations in the ichthyofauna composition and structure of a sheltered beach of Baía Norte (Florianópolis, Santa Catarina state, Brazil), using a capéchade net. Samples were collected monthly for a period of 48 hours. During the period from December 2010 to November 2011, a total of 19,302 individuals belonging to 89 species and 39 families were captured. The number of individuals that were sampled during the day and/or night was dependent on the sampling month. On average, the daytime assemblage was more abundant and different in structure and composition than the nighttime assemblage. Of the eight species that had the highest Index of Relative Importance (%IRI), five had higher variations (ANOVA F) between the day and night than between the months. This finding reinforced the need for sampling during both the day and night. The capéchade net effectively captured demersal and pelagic individuals in a broad range of sizes
    corecore